3D打印作为一种新兴的制造技术,目前包含非常多的技术类型,其中大家最常见就是像下图这种,由喷嘴喷出材料的FDM/FFF工艺。
这种3D打印技术用途多样,可以打印中大型的塑料组件,但是却无法用于打印亚微米分辨率的3D结构。
2020年2月19日,南极熊看到《Nature》子刊《Nature Communications》近期发表了一篇论文,介绍了一种 称为"静电射流偏转" 技术,这项技术可以喷射出出亚微米级的射流,喷射速度可以达到1m/s(普通FDM 3D打印机的喷出材料的速度在50-150mm/s)。
那么如此快速的喷射亚微米射流,怎样才能按照控制预设的结构进行层层堆叠呢?研究人员在喷嘴周围加上了电场,通过控制电极上的电压,使射流产生静电偏转。通过高达2000 Hz的电场频率,控制纳米丝材按照规律层层堆叠来打印3D对象,喷射连续调节的加速度可以达到100万m/s2。
最终这项新技术实现的平面内打印速度高达0.5m/s,垂直方向的打印速度可以达到0.4mm/s。
技术原理
图b技术原理,首先打印墨水不是靠挤压喷出的,而是靠在喷嘴和打印基板之间施加了1000V的电压。一旦作用在液体墨水表面上的电应力克服了表面张力,液面便会形成一个泰勒锥(图片a),从而将很细的墨水射向打印基板。
其次,在X轴和Y轴方向,同样增加了电极(图片c),这些电极能够改变射流附近的电场,从而控制墨水喷射到打印基板上的位置(图片e)。
随后的打印过程与传统的3D打印一样,逐层堆积直至形成所需的三维结构。
或许你会很好奇,如此高速的墨水喷射速度,如何能够精确的控制其偏转并堆叠在一起,不同的电场强度和频率对打印过程又会有怎样的影响呢?
研究发现,射流偏转的角度取决于电场变化的幅度和频率。当施加到喷射偏转电极上电压幅度较小时,可以观察到随电压频率线性变化的小偏转角(<15°)。当施加较高的电压幅度时,最终导致射流偏转角非线性增加,在开始出现严重的射流不稳定性之前,该偏转角限制在40°左右。
在低频下,小的振幅会导致光纤弯曲,而较大的振幅会产生直纤维(上图 a,b)。随着射流偏转频率的增加,导致屈曲的幅度范围减小(图c)。
打印出2D图案
因此,使用至少两个电极,就能使射流沿着基板平面在任何方向上偏转,可以产生具有任何预定形状的2D结构。
从上图a,b,c中可以明显看到三种打印结果,a是没有施加电极打印出的图案没有规则,b是施加了单个电极打印的图案,c是施加了两个电极打印的图案。
将打印喷嘴放置在距打印基板5mm处,并使用适当的喷射偏转角,使用两个射流偏转电极,并配合打印基板的平移,打印出了更复杂2D图案(d,e)。所使用的油墨为含有银纳米颗粒的4.7wt%PEO油墨。图中比例尺的长度为1mm。
打印出3D结构
前面已经成功打印出了2D的图案,如果想打印出3D的结构改怎么办呢?
只需要连续逐层沉积材料就可以了,从上图中可以看到研究人员通过施加单个电极,完成了薄壁结构的打印,他们打印了50层,100层,150层的多个薄壁结构,其高度与厚度之比远高于1000。
打印速度转换成平面内打印速度最高可达0.5m/s,离面速度高达0.4mm/s,如果通过增加打印材料的电导率或使用适当的气氛以允许更快的电荷耗散,可以进一步提高3D打印速度。
在施加了两个电极之后,研究人员成功的打印出了3D的圆柱体结构。从扫描电镜拍摄的照片来看,圆柱体的结构打印的非常整齐,而且分辨率非常之高。(图b,c,d的比例尺分别为200μm,5μm和1μm)。
打印墨水使用5%(重量含量)的50nm Ag纳米颗粒的油墨,通过高速相机捕获的照片(h)显示,1秒钟可以打印200层。
其他影响3D打印的因素
①溶剂蒸发速率
在使用基于溶剂的墨水进行3D物体的打印过程中,溶剂的蒸发速率是一个基本参数,它决定了喷射过程中以及到达打印基板时射流的粘弹性。溶剂的蒸发速率必须足够低,以使喷嘴不会阻塞,但必须足够高,以使打印基板上的材料快速固化。
溶剂的蒸发速率取决于多个参数,主要取决于油墨组成,尤其是所用溶剂的平衡蒸气压,环境条件,喷射流的大小和速度以及悬垂液滴的直径。最后一个参数是悬垂液滴的直径,它取决于针头的尺寸,流速和溶剂蒸发以及其他参数,这对打印过程特别是喷射偏转有很大影响。除了调整墨水成分和调整打印参数之外,为了调整溶剂蒸发的速度,可以将打印机放置在受控气氛下的腔室内,或者可以将包含溶剂蒸气的气流同轴地引入或靠近喷嘴。可能需要控制气体气氛,以防止敏感的油墨吸收周围的水分或氧气,这可能导致油墨相分离或降解。
研究人员对比了两种不同的油墨(PEO、PEO+Ag)在干湿两种情况下堆叠以后的微观结构
②电荷消散速率
为了实现高效的逐层打印,带电喷头携带并保留在打印材料上的电荷必须足够快地耗散掉,以允许下一层在其顶层集。如果电荷不能足够快地耗散,则排斥包含相等极性电荷的新到达的射流,从而使其落在随机或不精确的位置。考虑到油墨和打印聚合物的电导率,估计电荷消散时间在1/1000~1/100万 s范围内。因此,对于基于PEO并使用接地的导电基材的常规油墨,电荷耗散将最大打印频率限制为每秒1000-100万层,具体取决于打印纤维的湿度。
③ 材料的多样性
材料的多功能性是喷射3D打印的主要优势,除了可以打印由PEO制成的墨水,还可以合理设计墨水配方实现其他聚合物3D结构的打印,例如将PEO和PEDOT-PSS进行复合,或者是引入各种纳米颗粒到油墨中。此外,还能通过打印含有分子前驱体或金属盐的墨水,进一步退火处理后得到无机结构,也可以拓展至生物组织或者活细胞等的3D打印。