近年来,医用增材制造技术(3D打印)在医疗领域发展迅速。为应对新一轮技术变革,自2014年起,中国食品药品检定研究院(以下简称“中检院”)作为全国医用增材制造标准技术归口单位开展医用增材制造医疗器械的检验技术和标准化研究,建立了涵盖原材料、工艺验证、设备、数据传输和风险管理的标准体系和质控关键点。2018年,中检院组织制定了医用增材制造技术行业标准《用于增材制造的医用Ti-6AL-4V粉末》,推动增材制造技术的标准化工作,助力增材制造技术在医疗领域的安全有效应用。
具备独特技术优势
医用增材制造技术是生物医用材料、工程和生命科学交叉融汇并迅速发展的新兴制造学科。现阶段,3D打印技术可以应用于手术演练模型、个性化骨科植入医疗器械以及组织工程支架等的制造。组织工程支架打印结合细胞打印,为再生医学领域复杂组织器官的制造带来了希望。
目前,3D打印的具体成型技术有8种:①挤出成型技术,精确度达20微米~100微米,可打印液体类材料和凝胶类材料,应用于高分子类复杂结构医疗器械的制造和手术演练模型的构建;②喷墨式成型技术,精确度为50微米,可打印高分子材料和陶瓷材料,应用于齿科产品的制造;
③光固化成型技术,精确度为0.5微米~50微米,可打印凝胶、高分子和陶瓷复合材料;
④激光/电子束熔融成型技术,精确度为5微米~10微米,可打印金属材料,应用于骨科植入物的制造;
⑤三维拼装成型技术,精确度为100微米,可打印凝胶高分子和陶瓷复合材料;
⑥熔融层积成型技术,精确度为100微米,可打印热敏树脂及复合材料;
⑦选区激光烧结技术,精确度为50微米,可打印高分子和陶瓷材料;
⑧生物激光打印技术,精确度为10微米,可打印液体和凝胶类材料。
3D打印应用于医疗器械制备具有独特的技术优势。首先,可加工材料范围广。金属、高分子、凝胶甚至液体类材料都可通过3D打印技术成型为医疗器械产品。其次,可制造精密复杂结构和个性化结构。医疗器械种类繁多,很多医疗器械的独特精密和内部复杂结构对其临床预期用途的发挥至关重要。3D打印技术可以精确控制内部复杂结构,使工艺的可控性增强。例如,在个性化体外模型制造领域,手术演练模型被界定为二类医疗器械,已经有3D打印技术制备的下颌骨手术演练模型和肝肿瘤切除模型应用于临床;在个性化植入体制造方面,个性化的骨科植入物已应用于临床,用于修复骨肿瘤切除后的骨组织修复;在可降解组织工程支架制造方面,可降解的3D打印脑膜修复材料已在临床应用;细胞3D打印应用于体外构建组织工程血管和肿瘤药物筛选用模型的制备。
发展受到高度重视
医用增材制造技术在医疗领域应用的巨大前景受到各个国家的高度重视。欧盟和美国正在积极设立专项研究计划,推动3D打印技术的应用和相关标准法规的建设。 例如,2017年12月5日,美国食品药品管理局(FDA)正式发布《增材制造医疗器械技术考量指南》(Technical Considerations Additive For Manufactured Devices),对应用3D打印技术制造医疗器械应该考虑的风险点和要求进行了详细说明。早在2007年,欧盟就已批准由激光术熔融(EMB)技术制备的关节臼杯上市。
我国一直重视医用增材制造技术在医疗领域的发展。2015年,工业和信息化部、国家发展改革委、财政部联合发布《国家增材制造产业发展推进计划(2015-2016年)》(以下简称《推进计划》),提出“着力突破增材制造专用材料”,包含医用增材制造专用材料;“加快提升增材制造工艺技术水平”,包含用于医用植入物、金属牙冠、手术导板、医疗模型等材料的增材制造工艺技术;“加速发展增材制造装备及核心器件”,包含医用增材制造装备;“大力推进应用示范”,包含完善个性化增材制造医疗器械在产品分类、临床验证、产品注册、市场准入等方面的政策法规。