陶瓷的SLA技术最早是从陶瓷的流延成形和凝胶注模技术发展而来,制件精度高、表面质量和性能好,是目前3D打印技术中发展和推广最快的技术,一些公司已经推出了商业化的3D打印设备及配套耗材。SLA 陶瓷材料以高固含量陶瓷光敏浆料/膏体为主,常用材料有氧化硅、氧化铝、氧化锆、羟基磷灰石、磷酸钙、锆钛酸铅等。虽然适用于SLA的氧化物陶瓷种类比较丰富,但如何使用SLA技术制造出复杂形状的透明陶瓷一直是一个难题。德国卡尔斯鲁厄理工学院以高纯度纳米熔融石英和光敏树脂的混合物作为原料,利用SLA 技术制造出素坯,经过1300°C烧结制得具有高透光性的透明熔融石英玻璃制品(图7)。
图7 SLA技术制备透明石英玻璃流程图
直接SLS、SLM和LENS技术具有一些相同点,均是利用高能激光束烧结或熔化氧化物陶瓷粉末进行成形,但目前这些方法尚不成熟,存在热应力大、制件易产生缺陷、精度较低等问题。
碳化物和氮化物陶瓷是非氧化物陶瓷的代表,具有高温力学性能优异、热稳定性良好、硬度高等优点,但目前碳化物和氮化物是3D打印的难点,主要原因如下:
(1)碳化物、氮化物熔点很高甚至无熔点,难以采用高能束直接熔化成形;
(2)碳化物、氮化物在高温环境下易与氧发生反应生成低温相,影响制件的高温性能;
(3)3D打印中所使用的大多为有机粘结剂,成形后有机残碳难以完全去除,影响致密化过程。
目前较有效的碳化物、氮化物3D 打印方法主要有SLS、DIW和SLA。
SLS是目前研究较多的碳化物和氮化物的3D打印方法。SLS 使用的碳化物、氮化物的材料主要包含无机粉体和有机粘结剂, 无机粉体可以是碳化物、氮化物本身(可含助烧剂)或者能够通过化学反应转化为目标陶瓷材料的前驱体(如Si、SiO2、C等)。在制得素坯后,通过一定的后处理得到所需的碳化物、氮化物陶瓷零件。例如SiC 陶瓷可以通过两种方式获得:一是通过SLS 技术成形出以Si 和SiC 为主的骨架,之后向骨架中浸渗树脂、热解后生成多孔碳,最后通过渗硅得到SiC陶瓷;二是通过成形高分子骨架,热解之后得到C 骨架,然后通过渗硅得到SiC 陶瓷。然而这两种方式都不能确保反应完全进行得到纯SiC相,其中的残Si 或者残C都会对SiC 陶瓷的性能产生负面影响。
图8 SLA制备SiOC前驱体陶瓷流程图
DIW和SLA技术所使用的材料多为聚合物陶瓷前驱体,在成形后利用裂解反应得到目标陶瓷。陶瓷前驱体的常用类型有聚碳硅烷、聚硅氮烷、聚硼氮烷、聚氧烷等,相应裂解产物为碳化硅、氮化硅(碳氮化硅)、氮化硼和硅氧碳。美国HRL实验室通过SLA技术成形出复杂结构的前驱体聚合物,热解后得到强度及耐热性能优异的SiOC 陶瓷(图8)。香港城市大学吕坚教授团队采用弹性硅橡胶(PDMS)与纳米氧化锆混合制得陶瓷膏体,采用DIW技术成形后得到具有弹性的陶瓷前驱体,该前驱体能够在经过设计的受力方式下产生预期的变形,再经过高温裂解后得到SiOC 陶瓷制品(图9),在全球首次实现了陶瓷的4D打印。
图9 4D打印的弹性前驱体衍生陶瓷折纸结构
5、结束语
3D 打印材料发展至今,经历了从聚合物材料、金属材料到陶瓷材料的发展过程。目前每个领域仍不断有新材料出现,体现了3D打印技术的活力。尽管目前3D打印材料的类别已经涉及大部分材料体系,但能够成功应用于3D打印的材料与现在庞大的材料体系相比也仅仅是沧海一粟。面对未来3D打印结构功能一体化的发展趋势,需要在3D打印新材料、3D打印新技术和3D打印新装备等方面进行不断创新。除了3D打印新材料的开发外,3D打印材料的标准化和产业化也是3D打印材料发展所面临的重要课题。随着3D打印材料、工艺、装备的持续发展,3D 打印技术将更有力地支撑我国向制造强国迈进的步伐。
作者:陈双 吴甲民 史玉升(华中科技大学)