理想的吸振和降噪功能
噪音和振动令人不悦,有时振动甚至会降低机器性能。增材制造的点阵还可以降低机械噪音和振动。由于刚度低,承受和恢复大应变的能力强,点阵在抑制振动方面很有效。例如,点阵可以运用到重型设备上的隔离垫中,以减少进入制造系统的能量。点阵的可调特性也使得工程师可以改进设计以匹配其特定应用要求。
点阵结构可以作为先进的阻尼材料。根据市场研究,波音公司与HRL实验室共同研发了一种轻若鸿毛的微点阵阻尼材料,这一技术展示了独特的3D打印微点阵结构材料的巨大潜力。HRL实验室通过3D打印技术创造的这一突破性的金属结构,其基本的架构是通过UV光固化聚合物形成的模板。然后使用化学电镀的方法为模板镀上一层超薄的镍,再除掉热聚合物模板材料,只留下空心的金属结构。该金属结构的99.99%都是空气,纳米固体结构只占0.01%,空心管壁厚度仅100纳米,比头发细1000倍。通过利用中空管弯曲的能量吸收机构(如微点阵所提供的),HRL实验室的研究结果可以提供高阻尼的性能,特别是适用于声学,振动或冲击领域的阻尼用途。
通过设计释放点阵结构的潜能
点阵结构可以整合入零部件的设计中,不仅是从整体外观上与传统的产品设计区别开来,还能够实现减重、散热、缓冲等不同的功能。此外,不同的点阵细观结构还将实现不同的力学性能。那么,如何才能释放点阵结构的种种潜能,确保3D打印部件符合设计意图呢?此时,遵循为增材制造而设计(DfAM)的原则变得尤为重要, 即通过形状、尺寸、层级结构和材料组成的系统综合设计,最大限度提高产品性能。一些重要的DfAM因素包括胞元(点阵的基本单位)结构、大小和密度,材料选择和胞元方向等。
点阵胞元结构
点阵胞元结构形式众多,它们是点阵中的基本单元,常见的点阵胞元结构有立方体,星形,八角形,六边形,菱形和四面体等。
钛合金“蜘蛛”架,由雷尼绍AM250制造,Altair Optistrut软件, 和Materialise Magics 软件生成
点阵胞元结构可以调整甚至混合使用以获得部件所需的效果,选择不同的结构会产生不同的效果,比如说有的结构可以获得更高的刚度 – 重量比,有的结构可以更好地抑制能量,有的结构更加具有美感。
点阵胞元结构的大小和密度
点阵胞元结构的大小和密度是指单个胞元的大小以及在一个空间内胞元的数量。点阵胞元本身的大小取决于其节点和连接节点的梁的厚度和长度。较大的胞元更容易打印,同时也更硬。相应的,较小的胞元更均匀,但会受到特征尺寸的限制。在进行点阵结构设计时,可以在单个产品的不同位置上设置不同的密度以实现机械性能。通过传统制造技术实现这些性能,需要进行多个零件组装,而3D打印可以在单一产品中形成不同的功能性能区域。
材料的选择
制造材料决定了点阵的特性。弹性或软质材料通常需要设计成较小和较密集的胞元群以减少打印期间的下垂。刚性材料在打印点阵时具有更大的设计范围,胞元可以具有更大的尺寸和更少的数量。
点阵胞元结构的方向
打印时的摆放方向将对点阵结构是否能够打印成功产生影响,摆放方向会影响打印对象所需支撑的数量和位置。通常,合理摆放的点阵结构是自支撑的,不需要单独添加打印支撑结构。比如说,在粉末床激光熔融3D打印技术中,一般来说与加工托盘形成的角度小于45度的悬伸结构需要支撑,在摆放点阵结构时,应选择可实现最理想的零件自身支撑的摆放方向,以便尽可能降低加工成本并减少后期处理工作。
点阵结构的建模和3D打印中还存在不少挑战。 一个关键的挑战是要证明设计的性能可靠性,特别是在抗疲劳方面。由于点阵结构的表面和尖锐的交叉点很多,这带来了应力集中。
在点阵结构的设计方面,软件企业与增材制造企业以及点阵结构应用企业进行了大量探索。例如,在软件企业中,安世中德针对增材制造点阵结构仿真分析,开发了多尺度算法仿真软件Lattice Simulation,基于多尺度算法,用户可以采用等效均质化技术对点阵结构进行有限元分析,并且提取非均质化点阵结构的等效材料参数,在均质化等效实体模型宏观力学分析后,可以通过局部分析对胞元结构进行详细的应力校核。在应用企业中,中国空间技术研究院总体部根据三维点阵的胞元形式的特点,结合三维点阵在航天器结构中应用的实际情况,提出三维点阵结构胞元的表达规范,即通过胞元占据的空间并结合胞元杆件的直径来表达三维点阵结构胞元的设计信息。