回顾:2020年度军工材料领域的十个重大事件

空天防务观察
关注


图 11 台积电3纳米工艺制程芯片预计将在2022年下半年量产

作为目前芯片制造行业的“领头羊”,台积电也公布了自己的3纳米战略。2020年4月,台积电正式披露了其3纳米工艺技术细节,晶体管密度高达2.5亿/平方毫米。采用台积电7纳米极紫外光刻工艺的麒麟990 5G芯片的晶体管密度约为0.9亿/平方毫米,3纳米工艺晶体管密度是7纳米的3.6倍。在性能提升方面,台积电5纳米比7纳米性能提升15%,能耗降低30%。然而,预计3纳米比5纳米性能提升10%~15%,能耗降低25%~30%;在晶体管密度方面,台积电表示3纳米工艺较5纳米提高了1.7倍,晶体管密度高达2.5亿/平方毫米。与三星不同,在技术方面,台积电评估了多种方案,认为现行的鳍式场效应晶体管(FinFET)技术在成本及能效上更佳,首批3纳米芯片仍将采用FinFET技术。此外,台积电还表示,3纳米的研发符合预期,并没有受到疫情影响,预计在2021年进入风险试产阶段,2022年下半年正式量产。

九、新型稀土金属提纯方法有望解决美国进口依赖问题

图 12 使用配体辅助色谱法从煤灰、废旧磁铁中提纯稀土金属,确保电子产品关键材料的充足供应。(图片来源:普渡大学)

全球稀土金属市场总量达40亿美元,随着新电子产品、飞机、舰船、电动汽车的计算机芯片、发动机磁铁和其他关键产品的发展,稀土金属需求量还在持续增长。但地球上的稀土资源有限,难以确保可持续发展。2020年5月,美国普渡大学经过10年研发,提出一种具有自主知识产权的提取和净化工艺——使用配体辅助色谱法从煤灰、废旧磁铁和原矿中,安全、有效地净化和提纯稀土金属,且不影响环境,使美国能够在国内创造一个更稳定、更可靠的稀土金属来源。传统提纯稀土元素的方法为两相液-液萃取法,该工艺需要使用成千上万个串联或并联的混合沉降器单元,同时还会产生大量有毒废物。普渡大学开发的新工艺使用两区配体辅助置换色谱系统和一种新的区分离方法,可生产出纯度为99%的稀土金属。研究人员表示,该工艺有望解决美国一直以来因稀土金属过于依赖进口而产生的供应链隐患。

十、人工智能技术推进新材料研发进程

人工智能技术的发展加快了多种材料的成分设计,其中超硬材料和高熵合金的发展成为其中亮点。

图 13 W-Mo-B体系在0K时的三元相图(图片来源:Skoltech)

2020年9月,俄罗斯斯科尔科沃科学技术学院使用人工智能计算方法成功预测出几种由钨、钼、硼三种主元素组成的新型超硬材料。长期以来,科学家对二元材料进行了深入的研究,性能的进一步提升进入瓶颈期,为了设计新型材料,现在越来越频繁地加入第三种主元素,以期通过增加材料系统复杂性的方式来提升材料性能。研究人员开发出一种名为USPEX的进化算法(人工智能算法中的一种),成功预测了钨-钼-硼材料体系中的超硬三元化合物结构,与二元化合物相比显示出更好的硬度与断裂韧性,其中一些材料属于高熵合金。这项研究为寻找新型超硬硼化物材料奠定了基础。高熵合金一般由相等或相似比例的四种或更多元素组成,理论上可以组合出无限种合金组合,并且具有出色的机械、热、物理和化学性能,目前已开发出多种耐腐蚀、耐高温、耐低温、高强度合金。但是新型高熵合金的设计往往基于反复试验,需要花费大量时间和高额成本。2020年11月,韩国浦项科技大学开发了一种使用人工智能进行高熵合金相位预测的技术。研究团队开发的人工智能技术在模型优化、数据生成和参数分析等三个方面进行了深度学习,可提高高熵合金相位的可预测性和可解释性。研究结果有望大大减少现有新材料开发过程所需的时间和成本,未来可用于开发新的高熵合金。

(中国航空工业发展研究中心  胡燕萍,陈济桁,黄培生,刘代军)

本篇供稿:系统工程研究所

声明: 本文由入驻OFweek维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存